
DTIC
ELECTh V,
JUN 1 31991 ., f ,0 .71i.'

~~~~~P//,C .:/'L Sf I~<, ;  / /' k-s -::'-' "- ri

•f -- ,th?,,:c "

Parallel Architectures and Algorithms for Real-Time Synthesis
CV) M of High Quality Images using Deferred Shading

SBrice Tebbs. Ulrich Neumann, John Eyles, Greg Turk and David Ellsworth

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract c Rq q

High-end graphics workstations provide us with the ability to interactively display polygonal models of high
geometric complexity. It is our hope that future graphics workstations will also provide us with shading models
that go beyond Gouraud shading of polygons. This paper describes performance improvements that result from
storing a polygon's shading parameters at each pixel and deferring the shading calculations until all the polygons
have been processed. One benefit of this approach is that the shading calculations are only performed on the parts of
a surface that are visible, which means that this method becomes more attractive as shading models become more
complex and as the depth complexity of the scene increases. We also show how this technique maps onto different
parallel architectures for high performance rendering. In particular, we describe how this method can be used to
produce real-time images that incorporate Phong shading and procedural texture mapping on Pixel-Planes 5. Pixel-
Planes 5 is a massively parallel SIMD machine that is under construction at UNC. Since the processing elements of
Pixel-Planes are fully programmable, new shading models can be incorporated in the system without any hardware
modifications.

Introduction

JBoth the complexity of geometric models and the surface properties of objects contribute to the visual richness
of computer generated scenes. Polygons are the most commonly used geometric elements for graphical models and
much effort has been directed towards building hardware to rapidly display large collections of polygons [Fuchs 85]
(Akeley 88] (Apgar 88] [Potmesil 89]. However, most of the hardware architectures developed so far are unable to
generate images with complex shading models in real-time.

O [4This paper describes an approach to high-quality rendering that we call deferred shading. While this approach is
not new, we would like to explore its application to the design of real-time graphics systems. To illustrate this
technique. we describe how we have used this approach to improve the performance of Pixel-planes 5 [Fuchs 89].

Deferred shading involves two steps: rasterization and shading. For our purposes rasterization includes scan-
-: -" conversion, visibility determination, and the loading of geometric information, such as surface normals, into each

visible pixel. Storing this information requires additional memory per pixel. This may seem impractical at first but
currently available graphics systems already have as many as 96 bits per pixel [Akeley 89] (A recently announced
machine has >200 bits per pixel but full details are currently unavailable). Once rasterization is complete, the
information stored at each pixel is used to compute the pixel's color based on the shading model. We believe this
technique can be used effectively on any graphics system with the following characteristics:

" Deep frame buffer >100 bits pcr pixel
" High bandwidth into the frame buffer
" Pixel-level parallelism

Related Work

nefel'r-rd hirdino iz nof new in rendering software. In a scan-line polygon renderer [Watkins 70] the nearest

91-01688 91 10



surface at a given pixel is found and then only the shading for that front-most surface is computed at the pixel. Other
examples of deferred shading include Andrew Glassncr's Late-Binding Renderer (Glassner 88] and Ken Perlin's Pixel
Stream Editor [Perlin 851, in which information about surfaces such as surface ID, depth and a normal vector are
saved for the entire image. The only communication between renderer and shader is the image description that
includes this surface information for each pixel.

Deferred shading was part of the triangle processor system proposed by Deering et. al. (Deerng 88]. In this
architecture polygon rasterization is performed by passing a stream of pixels through a pipeline of triangle processor
chips that perform depth comparisons and scanning out the closest surface at each pixel. The system defers shading
calculation until after scan conversion by passing the depth, a surface normal and color description for each pixel to a
collection of chips called the Normal Vector Shaders. The Normal Vector Shaders compute the full Phong lighting
model based on the surface normal and color. Unfortunately, the Normal Vector Shaders were to be hardwired for a
specific lighting model and would have been unable to take full advantage of some of the deferred shading concepts
and algorithms that we present in this paper.

Advantages of Deferred Shading

An obvious benefit of deferred shading is that only those pixels that are visible in the final image are shaded.
Computing the Gouraud shading model is so fast that current graphics workstations can afford to shade all the pixels
in a polygon even if many of the pixels will later be obscured. However, as scene depth complexity increases and as
shading models become more complex, this becomes a substantial amount of wasted effort.

For certain classes of parallel hardware, deferred shading enjoys a second benefit. For many scenes the shading
computation will be the same at each pixel. We call the degree to which this is true the shading coherence of the
scene. For example, a scene in which all of the surfaces are shaded using the Phong lighting model would exhibit
high shading coherence. Parallel machines achieve high utilization when performing a large number of similar
computations. This means that scenes with high shading coherence can utilize massive parallelism at the pixel level
even if the geometric operations required for rasterization are more difficult to parallelize.

An additional advantage of this method has emerged as we developed the actual software for the Pixel-planes 5
machine. The separation of geometric computation from shading calculation means that we can implement new
geometric primitives without having to write new shading code. If we are able to load the correct surface geometry
information into the pixels, then all of the shaders we have written for polygons will work for other geometric
primitives such as surfaces and spheres.

Architectural Considerations

We believe that as scene complexities increase and higher quality shading models are used, deferred shading will
become more popular for real-time image synthesis. Our goal is to design systems which achieve 30Hz or greater
update rates with advanced lighting models and texture maps. In this section we discuss ways this might be achieved
using different organizations of processors for shading computations.

The shading computation for a pixel could be done by a pipeline of processors. Each processor would complete
on step of the shading computation for each pixel. Unfortunately, a very deep pipeline would be required to perform
complicated shading models on a >I M pixel frame buffer at refresh rates. Such a pipeline would be difficult to design
and even harder to program for a variety of shading algorithms. This is important since highly realistic shading
algorithms can be implemented with many different variations [Cook 84].

A MIMD array of processors where each processor shades a pixel at a time would allow for greater parallelism.
We could continue to add more processors until we had enough get the shading rates we needed. This option would
also allow for easier programming of new shading algorithms. A MIMD architecture could achieve good performance
even for scenes with little or no shading coherence. However, we believe that the shading coherence in most scenes
will make the cost of multiple control units for the MIMD processors an unnecessary expense.

153

__ _ _ _ _ __ _ _ _ _ _



A SIMD processor array could be used to cxploit high shading coherence at a lower cost than a MIMD array.
This is the architecture that has been used in both thc Pixcl-planes 4 and Pixel-planes 5 designs. The SIMD
processor arrays can shade 256K pixcls simultaneously. Sincc Pixel-planes 5 employs several SIMD renderers. it can
be considered a hybrid MIMD-SIMD architecture. This enables it to more efficiently handle images with lower
shading coherence.

Algorithms

We have been developing deferred shading algorithms for the Pixel-Planes 5 graphics architecture. Pixel-Planes
5 is a heterogeneous multiprocessor [Fuchs 89]: A fully configured system contains a MIMD set of 16 fast floating
point engines called graphics processors for performing geometric transformations and has 16 SIMD arrays called
renderers for performing polygon rasterization. Each renderer is a square array of 128x 128 processing elements
called pixel processors, and each of these pixel processors is a 1-bit ALU that runs at 40Mhz and has 208 bits of
memory. On Pixel-Planes 5. deferred shading reduces the computational burden on the graphics processors and fully
utilizes the quarter million pixel processors whosc aggregate computing power completely overshadows that of the
16 graphics processors.

The remainder of this section describes two of thc defcrrcd shading algorithms that we have developed for Pixel-
planes 5. They are all currently running on a softwarc simulator.

Phong Shading

We defer the computation of a lighting model by storing the surface normal and shading parameters at each pixel
during rasterization. We have found that 100 bits per pixel is adequate to store this information. For Phong shading
the surface normals must be interpolated [Phong 731. This intcrpolation process is simple and requires only 3 adds
per pixel using forward differencing.

Before the actual lighting modl can be evaluated the interpolated normal vectors must be normalized. This
requires the computation of a square root and a divide at each pixcl. The normal vector and eye vector are then used
to compute the normalized reflection vector at each pixel. Evaluation of the lighting equation may now be
performed. If. as is often done. we approximation the eye vector and light vector as constants across all pixels, each
pixel requires 2 dot products. 3 additions, 12 multiplications plus the exponentiation for the specular term.

The general lighting model additionally supports positional and spot lights with soft edges:

Intensity = Amb + (L.N) * (L.D) c onc Light * Kd + (L.R)slcc* (L-D)conc , Light * K s

Where-
Amb = Ambient light intensity L = Direction to light source
Light = Light source intensity D = Spot light direction
Kd  = Surface diffuse coefficient N = Surface normal vector
Ks  = Surface specular coefficient R = Reflection vector
spec = Surface specular power cone = Spot light beam concentration

While infinite distance point light sources allow simple approximations, for positional and spot light sources.
the correct light vectors at each pixel's surface must be computed. This can be done by applying the inverse of the
perspective transformation to the screen-spacc coordinate of the surface sampled at each pixel. The true eye vector
and any number of light vectors may now be computed at each pixel for use in the shading equation.

A Pixcl-Planes 5 renderer can interpolate the three components of the surface normal for an entire polygon in --

2.25 pts. (A complete triangle is rasterized in under 8 gs.) Normalization is done with a Newton iteration and
requires 154 Is. The simple case of eye ray approximation and reflection ray computation requires 35 ugs. -

___ __~ ~iLL



Evaluation of the shading equation for an infinite distancc light source (light vector is constant) requires 229 PIS for a

specular power of 128. Adding an ambient light source adds 44 pts and brings the total cost for this case to 462 ps.
For the above case, a fully configur" ?':!-P!'_,"r system c:m con'e= lhc phong shading for an entire

1280x 1024 image in 2.31 msec. (Note that each renderer is computing the lighting model five times: once for each
of five pixel regions.) Performance statistics for a Pixcl-Planes 5 renderer (assuming spec and conc = 128) are
broken down by task and summarized below.

Normalize Compute eye and Evaluate lighting equation
surf n reflection vector for each t=e of light

154 p.s Approx. eye vector = 35 ps Ambient source = 44 pIs
True eye vector = 310 gs Ininitc point source = 229 pis

Positional source = 504 p.s
Spot source = 640 pIs

Texture mapping has been important in hig;'-quality image synthesis for many years [Catmull 74]. With the
exception of multi-million dollar flight simulators, few systems havc incorporated the necessary hardware to do real-
time texture-mapping. Since extensive calculations are necessary to render property filtered textures, we believe that
deferred shading is an ideal approach for texture maipping scenes with high depth complexity or for texturing any
scene with procedurally defined textures. Other surface eflcts such as bump mapping can be done using deferred
shading when the lighting calculations arc also deferred.

The first step in texture-mapping is to compute the texture coordinatcs u and v for each pixel to be textured.
U and Y can be expressed as the ratio of two-bivariatc linear expressions in screen space [Heckbert 861 [Fuchs 85]:

U Ax + By + C Dx + Ey + F

Gx+Hy+I Gx+Hy+I

With forward differencing, these equations can be computed on a scan-line basis with 3 adds and 2 divides per
pixel. With deferred shading only the 3 adds arc performed during rastcrization; the divides can be computed for the
visible pixels in parallel after rasterization.

We have concentrated on procedural texture mapping for several reasons. Procedural textures typically have
small memory requirements [Perlin 85]; they arc fast on our system as compared to image textures; they are easily
extended to 3-d without a dramatic increase in memory usage; and they can be self-filtering [Gardner 88]. We hope to
animate them to produce real-ime moving scene backgrounds such as waving grass, moving clouds, or moving
waves. Recently, procedural texture mapping has been used to generate high-quality images of intensely geometric
objects such as fur (Perlin 89].

Gardner has used a product of two sets of cosine waves with cross-coupled phase offsets to generate realistic-
looking textures for natural scene generation [Gardner 85]. We have implemented this technique using quadratic
approximations to the cosine functions on our current Pixel-Plancs 4 prototype and developed a tool that allows the
user to explore the space of possible Gardner textures in real-time. A timing analysis of Gardner textures for Pixel-
Planes 5 shows the advantage of massive parallelism at the pixcl level. Typical interesting textures require 5 cosine
calculations for each of the two sets of cosines comprising the texture function. Computing each cosine term in a
sum requires 5 multiplies and 3 additions. Pixel-Plancs 5 can compute the complete texture for a 128x128 renderer
in about 0.5 msec. This means that we can do the shading calculations to texture map an entire 1280x1024 display
in 2msec on a fully configured system. Since different textures arc computed with the same formula we can compute
textures for sky and terrain pixels simultaneously by loading (lifferent parameters for pixels with different textures.
This allows us to maintain high shading coherence even though we may have several different texture maps.

Interactive displays are particularly sensitive to sampling artifacts, since artifacts sparkle and dance over moving
polygons. Unfortunately, simple super-sampling in screen space is not sufficient to anti-alias texture maps
(Heckbert 86]. The calculations to perform this filtering can also be deferred if enough information is saved in the
frame buffer to compute an estimate of the relative sizc of texture pixels and screen pixels. This information could
take the form of partial derivatives or values for u and v at the pixel comers. Image textures can then be anti-
aliased using any of a number of standard techniques I Willams 831 [Crow 84). Procedural textures can be anti-aliased

155



when the texture samples are computed by omitting the high-frequency components of the function [Gardner 881.
We have concentrated on this and have achieved good results anti-aliasing Gardner textures using clamping [Norton
823.

We are currently implementing image textures using the :.?. _nti-aliasing techniquc (Willams 831. which
should give interactive speeds for small textures (33 ms for one 64 x64 texture). We plan to implement at least two
other algorithms with deferred shading: bump mapping (Blinn 781 and fog.

Summary

We have described an approach to designing graphics systems for real-time high quality image generation. The
technique has the advantage that complicated shading algorithms need only be computed for the visible pixcls. We
have shown that SIMD parallel architectures work well with a deferred shading system. and show how to implement
Phong shading and procedural texture mapping.

References

[Akeley 881 Akeley. Kurt and T. Jermoluk. "High-Performance Polygon Rendering." Computer Graphics.
22(4). (Proceedings of SIGGRAPH '88). pp. 239-246.

(Apgar 881 Apgar, B.. B. Bersack, A. Mammen, "A Display System for the Stellar Graphics Supercomputer
Model GSIOOO." Computer Graphics. 22(4), (Proceedings of SIGGRAPH 88). pp. 255-262.

[Blinn 78] Blinn, J. F., "Simulation of Wrinkled Surfaces," Computer Graphics, 12(3), (Proceedings of
SIGGRAPH '78), pp. 286-292.

[Caunull 741 Caunull, Ed, "A Subdivision Algorithm for Computer Display of Curved Surfaces," Ph.D.
Dissertation, University of Utah, December 1974.

[Cook 84] Cook, Robert L., "Shade Trees." Computer Graphics. 18(3). (Proceedings of SIGGRAPH '84). pp.
223-232.

(Crow 841 Crow, F.. "Summed-Area Tables for Texture Mapping," Computer Graphics, 18(4), (Proceedings
of SIGGRAPH '84), pp. 207-212.

(Deering 881 Deering, M., S. Winner. B. Schediwy. C. Duffy, N. Hunt, "The Triangle Processor and Normal
Vector Shader: A VLSI System for High Performance Graphics," Computer Graphics. 22(4).
(Proceedings of SIGGRAPH '88), pp. 21-30.

[Fuchs 85] Fuchs, H., J. GoldFeather, J.P. Hultquist, S. Spach, J. Austin, F.P. Brooks. Jr., J. Eyles, and J.
Poulton, "Fast Spheres, Textures, Transparencies, and Image Enhancements in Pixel-Planes," Computer
Graphics, 19(3), (Proceedings of SIGGRAPH '85), pp. 111-120.

[Fuchs 89] Fuchs, H., J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth, S. Molnar, G. Turk, B.
Tebbs and L. Israel, "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor-
Enhanced Memories," Computer Graphics, 23(3). (Proceedings of SIGGRAPH 89), pp. 79-88.

(Gardner 851 Gardner, Geoffry Y.. "Visual Simulation of Clou&,." Computer Graphics. 19(3). (Proceedings of
SIGGRAPH 85), pp. 297-304.

[Gardner 88] Gardner. G.. "Functional Modeling of Natural Scenes, Functional Based Modeling," SIGGRAPH
Course Notes, vol. 28, 1988. pp. 44-76.

[Glassner 881 Glassner, Andrew, "Algorithms for Efficient Image Synthesis," Ph.D. Dissertation, University of
North Carolina at Chapel Hill, 1988.

[Heckbert 86] Heckbert. Paul S.. "Survey of Texture Mapping." IEEE Computer Graphics and Applications,
6(11), pp. 56-67.

(Norton 82] Norton, Alan, "Clamping: A Method of Antialiasing Textured Surfaces by Bandwidth Limiting in
Object Space," Computer Graphics, 16(3), (Proceedings of SIGGRAPH 82). pp. 1-8.

[Perlin 85] Perlin, Ken, "An Image Synthesizer," Computer Graphics, 19(3), (Proceedings of SIGGRAPH
'85), pp. 151I-159.

(Perlin 891 Perlin, Ken and Eric M. Hoffert, "Hypertexture," Computer Graphics. 23(3). (Proceedings of
SIGGRAPH '89), pp. 253-262.

(Phong 731 Phong, B.T., "Illumination for Computer-Generated Pictures," Ph.D. Dissertation. University of
Utah, Salt Lake City, 1973.

(Potmesil 89] Potmesil, Michael and Eric M. Hoffert, "The Pixel Machine: A Parallel Image Computer,"
Computer Graphics. 23(3) (Proceedings of SIGGRAPH '89), pp. 69-78.

(Watkins 701 Watkins, G.. "A Real-Time Visible Surface Algorithm, "University of Utah Computer Science
Department, UTEC-CSc-70-101, June 1970, NTIS AD-762 004.

rWilliams 831 Williams. Lance, "Pyramidal Parametrics." Computer Graphics 17(3) (Proceedings of
SIGGRAPH '83). pp. 1-11.

156


